The Hayman-Wu constant

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Hayman-wu Theorem

The Hayman-Wu theorem states that the preimage of a line or circle L under a conformal mapping from the unit disc D to a simplyconnected domain Ω has total Euclidean length bounded by an absolute constant. The best possible constant is known to lie in the interval [π, 4π), thanks to work of Øyma and Rohde. Earlier, Brown Flinn showed that the total length is at most π in the special case in whi...

متن کامل

The Constant Curvature Property of the Wu Invariant Metric

We investigate the property of the Wu invariant metric on a certain class of psuedoconvex domains. We show that the Wu invariant Hermitian metric, which in general behaves as nicely as the Kobayashi metric under holomorphic mappings, enjoys the complex hyperbolic curvature property in such cases. Namely, the Wu invariant metric is Kähler and has constant negative holomorphic curvature in a neig...

متن کامل

Hayman Fire Case Study

_________________________________________ Graham, Russell T., Technical Editor. 2003. Hayman Fire Case Study. Gen. Tech. Rep. RMRSGTR-114. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research

متن کامل

Anthropogenic Changes to the Hayman Area

The rivers of the Front Range are dammed and diverted to provide water to the surrounding regions, and they are constricted by roads and railroads, stocked with fish, polluted by mining wastes and urban runoff. Yet many of the people who visit the Front Range for short periods perceive the landscape to be a nearly pristine wilderness because they are unaware of the historical impacts of human a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1993

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1993-1149976-4